虽然最近,已经提出了许多设计来提高卷积神经网络的模型效率(CNNS)在固定资源预算上,对这些设计的理论理解仍然显着缺乏。本文旨在为回答问题提供新框架:压缩CNN中还有剩余的模型冗余吗?我们首先通过张量分解开发CNN和压缩的CNN的一般统计制剂,使得跨层的重物可以总结为单个张量。然后,通过严谨的样本复杂性分析,我们揭示了衍生的样本复杂性和天真参数计数之间的重要差异,它用作模型冗余的直接指示器。通过此发现的激励,我们为压缩CNN的压缩CNN介绍了一种新的模型冗余度量,称为$ k / r $比率,进一步允许非线性激活。通过对流行块设计和数据集的消融研究支持这种新措施的有用性。
translated by 谷歌翻译
Out-Of-Distribution (OOD) detection has received broad attention over the years, aiming to ensure the reliability and safety of deep neural networks (DNNs) in real-world scenarios by rejecting incorrect predictions. However, we notice a discrepancy between the conventional evaluation vs. the essential purpose of OOD detection. On the one hand, the conventional evaluation exclusively considers risks caused by label-space distribution shifts while ignoring the risks from input-space distribution shifts. On the other hand, the conventional evaluation reward detection methods for not rejecting the misclassified image in the validation dataset. However, the misclassified image can also cause risks and should be rejected. We appeal to rethink OOD detection from a human-centric perspective, that a proper detection method should reject the case that the deep model's prediction mismatches the human expectations and adopt the case that the deep model's prediction meets the human expectations. We propose a human-centric evaluation and conduct extensive experiments on 45 classifiers and 8 test datasets. We find that the simple baseline OOD detection method can achieve comparable and even better performance than the recently proposed methods, which means that the development in OOD detection in the past years may be overestimated. Additionally, our experiments demonstrate that model selection is non-trivial for OOD detection and should be considered as an integral of the proposed method, which differs from the claim in existing works that proposed methods are universal across different models.
translated by 谷歌翻译
Contrastive Language-Image Pre-trained (CLIP) models have zero-shot ability of classifying an image belonging to "[CLASS]" by using similarity between the image and the prompt sentence "a [CONTEXT] of [CLASS]". Based on exhaustive text cues in "[CONTEXT]", CLIP model is aware of different contexts, e.g. background, style, viewpoint, and exhibits unprecedented robustness against a wide range of distribution shifts. However, recent works find further fine-tuning of CLIP models improves accuracy but sacrifices the robustness on downstream tasks. We conduct an empirical investigation to show fine-tuning will corrupt the context-aware ability of pre-trained CLIP features. To solve this problem, we propose Context-Aware Robust Fine-tuning (CAR-FT). CAR-FT regularizes the model during fine-tuning to capture the context information. Specifically, we use zero-shot prompt weights to get the context distribution contained in the image. By minimizing the Kullback-Leibler Divergence (KLD) between context distributions induced by original/fine-tuned CLIP models, CAR-FT makes the context-aware ability of CLIP inherited into downstream tasks, and achieves both higher In-Distribution (ID) and Out-Of-Distribution (OOD) accuracy. The experimental results show CAR-FT achieves superior robustness on five OOD test datasets of ImageNet, and meanwhile brings accuracy gains on nine downstream tasks. Additionally, CAR-FT surpasses previous Domain Generalization (DG) methods and gets 78.5% averaged accuracy on DomainBed benchmark, building the new state-of-the-art.
translated by 谷歌翻译
远程患者监测(RPM)系统的最新进展可以识别各种人类活动,以测量生命体征,包括浅表血管的细微运动。通过解决已知的局限性和挑战(例如预测和分类生命体征和身体运动),将人工智能(AI)应用于该领域的医疗保健领域越来越兴趣,这些局限性和挑战被认为是至关重要的任务。联合学习是一种相对较新的AI技术,旨在通过分散传统的机器学习建模来增强数据隐私。但是,传统的联合学习需要在本地客户和全球服务器上培训相同的建筑模型。由于缺乏本地模型异质性,这限制了全球模型体系结构。为了克服这一点,在本研究中提出了一个新颖的联邦学习体系结构Fedstack,该体系支持结合异构建筑客户端模型。这项工作提供了一个受保护的隐私系统,用于以分散的方法住院的住院患者,并确定最佳传感器位置。提出的体系结构被应用于从10个不同主题的移动健康传感器基准数据集中,以对12个常规活动进行分类。对单个主题数据培训了三个AI模型ANN,CNN和BISTM。联合学习体系结构应用于这些模型,以建立能够表演状态表演的本地和全球模型。本地CNN模型在每个主题数据上都优于ANN和BI-LSTM模型。与同质堆叠相比,我们提出的工作表明,当地模型的异质堆叠表现出更好的性能。这项工作为建立增强的RPM系统奠定了基础,该系统纳入了客户隐私,以帮助对急性心理健康设施中患者进行临床观察,并最终有助于防止意外死亡。
translated by 谷歌翻译
近年来,已取得了巨大进展,以通过半监督学习(SSL)来纳入未标记的数据来克服效率低下的监督问题。大多数最先进的模型是基于对未标记的数据追求一致的模型预测的想法,该模型被称为输入噪声,这称为一致性正则化。尽管如此,对其成功的原因缺乏理论上的见解。为了弥合理论和实际结果之间的差距,我们在本文中提出了SSL的最坏情况一致性正则化技术。具体而言,我们首先提出了针对SSL的概括,该概括由分别在标记和未标记的训练数据上观察到的经验损失项组成。在这种界限的激励下,我们得出了一个SSL目标,该目标可最大程度地减少原始未标记的样本与其多重增强变体之间最大的不一致性。然后,我们提供了一种简单但有效的算法来解决提出的最小问题,从理论上证明它会收敛到固定点。五个流行基准数据集的实验验证了我们提出的方法的有效性。
translated by 谷歌翻译
对抗性训练(AT)通常被认为是防御对抗性例子的最有效的方法之一,可能会在很大程度上损害标准绩效,因此对工业规模的生产和应用的有用性有限。令人惊讶的是,这种现象在自然语言处理(NLP)任务中完全相反,在该任务中甚至可以从中受益。我们注意到NLP任务中AT的优点可能来自离散和符号输入空间。为了借用NLP风格的优势,我们提出了离散的对抗训练(DAT)。 DAT利用VQGAN改革图像数据以离散类似文本的输入,即视觉单词。然后,它可以最大程度地减少这种离散图像的最大风险,并具有符号对抗扰动。我们从分布的角度进一步提供了解释,以证明DAT的有效性。作为增强视觉表示的插件技术,DAT可以在多个任务上取得重大改进,包括图像分类,对象检测和自我监督学习。尤其是,该模型通过胶带自动编码(MAE)预先训练并由我们的DAT进行微调,而没有额外的数据可以在Imagenet-C上获得31.40 MCE,并且在Stylized-Imagenet上进行了32.77%的TOP-1准确性,建立了新的状态 - 艺术。该代码将在https://github.com/alibaba/easyrobust上找到。
translated by 谷歌翻译
立场检测任务旨在对给定文件和主题的立场进行分类。由于该主题可以隐含在文档中,并且在零摄影设置的培训数据中看不见,因此我们建议通过使用情感和常识知识来提高立场检测模型的可传递性,这在先前的研究中很少考虑。我们的模型包括一个图形自动编码器模块,以获取常识性知识和带有情感和常识的立场检测模块。实验结果表明,我们的模型优于零射击和少量基准数据集(VAST)上的最新方法。同时,消融研究证明了我们模型中每个模块的重要性。对情感,常识和立场之间关系的分析表明了情感和常识的有效性。
translated by 谷歌翻译
深度神经网络(DNN)受到对抗例的威胁。对抗性检测是基于稳健的基于DNNS的服务的基本工作,其区分来自良性图像的对抗图像。图像转化是检测对抗性示例的最有效的方法之一。在过去几年中,已经研究了各种图像转换,并讨论了设计可靠的对抗性探测器。在本文中,我们通过具有新的分类学通过图像转换来系统地查看近期对抗性检测的进展。然后,我们进行广泛的实验,以测试图像转换的检测性能,以朝向最先进的对抗性攻击。此外,我们揭示了单一转换不能检测鲁棒的对手示例,并通过组合多个图像变换来提出改进的方法。结果表明,联合方法达到了检测准确性和召回的显着提高。我们建议联合探测器是一种更有效的工具来检测对抗性实例。
translated by 谷歌翻译
高维非正交掺入张量的CP分解是许多学科的广泛应用的重要问题。然而,以前的理论保证的工作通常在CP组分的基础载体上承担限制性的不连贯条件。在本文中,我们提出了新的计算高效的复合PCA和并发正交化算法,以便在轻度不连结条件下的理论保证。复合PCA将主成分或奇异值分解应用于张量数据的矩阵,以获得奇异矢量,然后在第一步骤中获得的奇异载体的基质折叠。它可以用作Tensor CP分解的任何迭代优化方案的初始化。并发正交化算法通过将突起同时施加到其他模式中的其他模式所产生的空格的正交补充,迭代地估计张量的每个模式的基础向量。旨在改善具有低或中等高CP等级的张量的交替的最小二乘估计器和其他形式的高阶正交迭代,并且当任何给定的初始估计器的错误被小常数界定时,它保证快速收敛。我们的理论调查为两种提出的算法提供了估算准确性和收敛速率。我们对合成数据的实施表明了我们对现有方法的方法的显着实际优势。
translated by 谷歌翻译
深度神经网络(DNN)受到对抗的示例攻击的威胁。对手可以通过将小型精心设计的扰动添加到输入来容易地改变DNN的输出。对手示例检测是基于强大的DNNS服务的基本工作。对手示例显示了人类和DNN在图像识别中的差异。从以人为本的角度来看,图像特征可以分为对人类可易于理解的主导特征,并且对人类来说是不可理解的隐性特征,但是被DNN利用。在本文中,我们揭示了难以察觉的对手实例是隐性特征误导性神经网络的乘积,并且对抗性攻击基本上是一种富集图像中的这些隐性特征的方法。对手实例的难以察觉表明扰动丰富了隐性特征,但几乎影响了主导特征。因此,对抗性实例对滤波偏离隐性特征敏感,而良性示例对这种操作免疫。受到这个想法的启发,我们提出了一种仅称为特征过滤器的标签的侵略性检测方法。功能过滤器利用离散余弦变换到占主导地位的大约单独的隐性功能,并获得默认隐性功能的突变图像。只有在输入和其突变体上进行DNN的预测标签,特征过滤器可以实时检测高精度和少量误报的难以察觉的对抗性示例。
translated by 谷歌翻译